The Single-Stage Production of Low Zinc Pig Iron Nuggets from Basic Oxygen Furnace dust, using Blast Furnace Dust as a reductant

February 2019
Daniel Stewart BSc(Hons) AMRSC
Year Two
The Circular Economy of Steel

- Raw Materials
- Mining
- Steelmaking
- Internal Recycling
- Manufacturing
- Pre-Consumer Recycling
- Post-Consumer Recycling
- Useful Products
- Pre-Consumer Recycling
- Internal Recycling
- Steelmaking
- Mining

Single Stage Production of Pig Iron Nuggets
How does Hot Dip Galvanizing change this cycle?

Mining

Raw Materials

Raw Materials

Steelmaking

Internal Recycling

Zinc Contaminated Iron Material

Metallic Zinc Industry

Hot Dip Galvanizing

Pre-Consumer Recycling

Useful Products

Post-Consumer Recycling

Post-Consumer Recycling

Pre-Consumer Recycling

Internal Recycling

Steelmaking

Raw Materials

Mining
Galvanizing - The Silver Bullet in the Battle against Corrosion

2Fe(s) + \(\frac{3}{2}\) O\(_2\)(g) → Fe\(_2\)O\(_3\)(s)

\[\Delta_f G^\circ = -742.2 \text{ kJmol}^{-1}\]

Very thermodynamically favourable!

- Hot dip galvanized material has become critical in automotive and construction sectors due to its ability to resist this reaction for longer.

- Corrosion has been estimated to directly cost the US economy $276 billion per annum.

Where does this Zinc end up?

Steelmaking Revert Materials

- **Almost every stage in steelmaking has an associated dust by-product**
 - **Fines** generated during the handling of bulk material
 - **Off-gas Dusts** when process gases are cleaned before discharge to atmosphere, dust is recovering in the form of slurry, sludge or dry dusts
 - **Mill scales** formed from the flaking of iron oxide from the hot surfaces of slabs in casters/hot strip mill
- These products are too fine for direct recycling into the blast furnace, so require agglomeration
- Usual process route is to agglomerate the fines in the Sinter Plant but this process does not separate zinc from the ferrous material.
The usual solution to Zinc bearing wastes? Dilution

Zinc loading in a Blast Furnace

- High levels of Zn in the blast furnace can have deleterious effects on furnace performance
 - This is due to cycling of Zn within the stack and the formation of scaffolds
- Zinc in input materials is therefore tightly controlled, around 200g Zn/tonne of hot metal

Therefore a 3.5mt steel plant could only process around 700 tonnes of zinc per year through the furnaces

- This limit on the amount of zinc permissible in the furnace can result in surplus revert material that is unable to re-enter the process economically.
- Some of the zinc within the furnace exits with the off-gas dust, this is the source of our first difficult to recycle material – Blast Furnace Dust
The introduction of Zinc into the revert cycle – BOS Slurry

• Around 25% of the iron produced in a BOS converter is sourced from scrap

• Any Zinc present within this scrap charge immediately vaporizes and reoxidizes in the off-gas

• The off-gas dust is collected via a de-dusting system to give BOS Slurry, our second key high zinc material

• The levels of zinc in BOS slurry can be managed by excluding galvanized scrap from charges

• However, non-galvanized scrap is more expensive and simply not recycling galvanized material is not a long term solution
Blast Furnace Dust and Basic Oxygen Steelmaking Dust

Blast Furnace Dust

- From **20%-30% carbon**, originating from the coke charged to the blast furnace
- Produced as a wet slurry as a result of being wet scrubbed from off-gas

<table>
<thead>
<tr>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe₅O₇</th>
<th>FeO</th>
<th>Fe₂O₃</th>
<th>Cfix</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.60</td>
<td>4.07</td>
<td>0.30</td>
<td>12.87</td>
<td>3.045</td>
<td>28.57</td>
<td>1.87</td>
<td>38.83</td>
<td>30.83</td>
<td>1.31</td>
</tr>
</tbody>
</table>

Typical chemical analysis of blast furnace dust

Basic Oxygen Steelmaking Dust

- Much more metallized due to origin in steel plant, high Fe content
- Typically has a **higher Zn content (2% - 8%)** than BF dust, negligible amounts of fixed carbon

<table>
<thead>
<tr>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>TiO₂</th>
<th>CaO</th>
<th>MgO</th>
<th>Fe₅O₇</th>
<th>FeO</th>
<th>Fe₂O₃</th>
<th>Cfix</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.83</td>
<td>0.39</td>
<td>0.05</td>
<td>11.18</td>
<td>2.13</td>
<td>58.93</td>
<td>57.3</td>
<td>20.55</td>
<td>-</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Typical chemical analysis of basic oxygen steelmaking slurry
Barriers to Zinc Separation

The Zinc Recovery Gap

• Iron is considered a tramp element with regards to zinc extraction, therefore the value of any zinc bearing dusts decreases rapidly with higher Fe% and lower Zn%.

• High zinc materials (12-15wt%) can be sold or economically processed in a number of ways including – Waelz Kiln, Hydrometallurgical leaching etc. The zinc’s high value offsets the large operational costs of these processes.

• Low zinc material (<0.3wt%) generated at a steelworks can typically be recycled within existing processes by dilution with other material, dependent on volumes.

• This leaves a gap in material recycling viability that unfortunately BOS dust and BF dust fall into; the best available technology for processing these medium zinc content materials is the rotary hearth furnace.
Process Flow for the RHF – general outline of Fastmet®, DryIron® etc.

1. **Blending**
 - Coal
 - Fe Fines
 - Binder

2. **Pelletizing/Briquetting**

3. **Drying Pellets**

4. **Off-gas cleaning**

5. **Crude Zinc Oxide**
 - Zn
 - O

6. **Rotary Hearth Furnace**

7. **Direct Reduced Iron Pellets**
The Chemistry of the RHF – Plan View

Reduction Reactions

\[
\begin{align*}
\text{ZnO(s) + CO(g) } & \rightarrow \text{ Zn(g) + CO}_2(g) \\
\text{ZnO(s) + C(s) } & \rightarrow \text{ Zn(g) + CO(g)}
\end{align*}
\]

\[
\begin{align*}
\text{Fe}_2\text{O}_3(s) + \text{C(s) } & \rightarrow 2\text{Fe(s) + 3CO(g)} \\
\text{Fe}_2\text{O}_3(s) + \text{CO(g) } & \rightarrow 2\text{Fe(s) + 3CO}_2(g)
\end{align*}
\]

Typical DRI from Waste

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe\text{Tot} / wt%</td>
<td>70</td>
</tr>
<tr>
<td>Metallization / %</td>
<td>95</td>
</tr>
<tr>
<td>Zn / wt%</td>
<td>0.004</td>
</tr>
<tr>
<td>S / wt%</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Input Material

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc Bearing Waste</td>
<td>70%</td>
</tr>
<tr>
<td>Ground Coal</td>
<td>29.5%</td>
</tr>
<tr>
<td>Binder</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Reduction and Zn Removal

1200 °C – 1400 °C

Preheating and Gasification

700°C – 1200 °C

Solid flow direction

Gas flow direction
Cross Sectional View – Full Post Combustion and Zn Reoxidation

Gas/Pulverised Coal Burner

Heat

Zn(g) + CO₂(g) → ZnO(s) + CO(g)

Zinc Reduction

ZnO(s) + CO(g) → Zn(g) + CO₂(g)

Boudouard Reaction

C(s) + CO₂(g) → 2CO(g)

Heat

Exit in off-gas

Post combustion

2CO(g) + O₂(g) → 2CO₂(g)

Oxidizing

CH₄(g) + O₂(g) → CO₂(g) + H₂O(g)

Reducing

Pellet/Briquette Layer

Hearth

Water Gas Seal
The Rotary Hearth Furnace

- Rapid Processing
- Very high thermal efficiency
- Able to use inexpensive non-coking coals
- Large initial capital expense
- High temperature and carbon source required
- Requires support plant
- Low CO₂ emission
- Saleable ZnO product
- High and flexible Zn removal
- DRI product useful on site
- Relatively immature technology
So what’s the problem? The RHF seems like the ideal technological solution

The value of the ZnO and Direct Reduced Iron produced isn’t high enough

- When accounting for the operational costs of an RHF and the input material costs (coal as a reducing agent, binder) the units don’t generate enough value to offset the large investment

How much do my Raw Materials cost?
- Material prices
- Disposal savings from utilizing by-products

How much does it cost to process them?
- Energy
- Labour
- Pre-processing
- Capital outlay

How valuable is the product?
- Products directly sold to consumer
- Value in use for products utilized internally

Input Expenditure

Operational Expenditure

Output Value
Displacing coal from the RHF

Utilizing the C_{fix} of BF dust

- Theoretically, to fully reduce the zinc and iron within a pellet, the blend should satisfy the stoichiometric relationship

$$\frac{C_{\text{fix}}}{O_{\text{Fe}}+O_{\text{Zn}}}=1$$

- Therefore a blend of around 50% BF dust and 50% BOS slurry should be sufficient to fully reduce and dezinc both materials

- Experimentally, 95% Zn removal and ~80% metallization of Fe is achievable at realistic RHF temperatures (1300 °C) and hold times (22 mins) for a 50:50 pellet in a non-inert atmosphere

- The result is a crude ZnO powder and a lump of direct reduced iron, however – the DRI produced in initial experimentation was physically weak and would be unsuitable for use in the BF
A closer look at the DRI Product

Scanning Electron Microscopy

Slaggy matrix containing CaO/SiO$_2$/MgO

Metallic iron grains

Electron Image 4

25μm
Can the output value of the RHF be increased without drastically changing the other two variables?

Input Expenditure
- Material prices
- Disposal savings from utilizing by-products

Operational Expenditure
- Energy
- Labour
- Pre-processing
- Capital outlay

Output Value
- Products directly sold to consumer
- Value in use for products utilized internally

How much do my Raw Materials cost?

How much does it cost to process them?

How valuable is the product?
ITmk3 and the Mesabi Plant

A new spin on the RHF

- Developed by Kobe Steel in the 2000s, ITmk3 is a variant of the RHF whereby pellets achieve a fully molten state and slag and iron separate to form distinct iron nuggets all within an adapted RHF.

ITmk3 – 1400 °C

Fastmet – 1300 °C

Gasification

Heat

Coal \rightarrow H$_2$, CH$_4$, CO, H$_2$O, N$_2$, C$_n$H$_m$, C

C + O$_2$ \rightarrow CO$_2$

CO$_2$ + C \rightarrow 2CO

C + $\frac{1}{2}$ O$_2$ \rightarrow CO

CH$_4$ + CO$_2$ \rightarrow 2CO + 2H$_2$

C + H$_2$O \rightarrow CO + H$_2$

CaCO$_3$ \rightarrow CaO + CO$_2$

Reduction

Fe$_3$O$_4$ + C \rightarrow 3FeO + CO

FeO + C \rightarrow Fe + CO

Fe$_3$O$_4$ + CO \rightarrow 3FeO + CO$_2$

FeO + CO \rightarrow Fe + CO$_2$

Fe$_3$O$_4$ + H$_2$ \rightarrow 3FeO + H$_2$O

FeO + H$_2$ \rightarrow Fe + H$_2$O

Slag Forming*

CaO + SiO$_2$ \rightarrow CaSiO$_3$

SiO$_2$ + 2C \rightarrow Si + 2CO

FeO + SiO$_2$ \rightarrow FeSiO$_3$

CaO + FeSiO$_3$ \rightarrow CaSiO$_4$ + FeO

FeS + CaO + CO \rightarrow CaS + FeO + CO

Carburization and Melting

Fe + C \rightarrow [C]$_{Fe}$

C + 3Fe \rightarrow Fe$_3$C

Fe(s) \rightarrow Fe(l)
ITmk3 and the Mesabi Plant

A high value added product from iron ore
RHF Direct Reduced Iron versus Pig Iron Nuggets

Direct Reduced Iron
- 60-70% Fe$_{\text{Tot}}$, mostly recycled to BF
- No slag separation, increase in slag volume and heat loss during recycling
- Propensity to reoxidation, *pyrophoric* unless hot briquetted
- Highly metallized

Pig Iron Nuggets
- >95% Fe$_{\text{Tot}}$, scrap replacement
- No entrained slag
- Completely metallized, similar structure to blast furnace pig iron
- High density, easy to store and transport due to oxidative stability
- Do not generate fines and are exceptionally easy to remelt
ITmk3 and the Mesabi Plant

An alternative use for ITmk3

- The plant in MN was unsuccessful for a number of reasons including
 - EAF customer issues related to residual S from reductant coal in pig iron nuggets
 - Difficult economic circumstances related to global steel crisis 2015-2016

- Instead of using it at the source of iron to generate a higher value Fe product than ore pellets/DRI, can it be introduced into the Zn recovery process at an integrated steelworks?

 - Removal of Zinc
 - Generation of a low melting temperature slag
 - Low temperature melting of iron
 - Immiscibility between Fe and slag phases
Iron ore used in ITmk3

Target slag chemistry

Unfluxed BF/BOS pellets
C_{fix} = O_{Zn} + O_{Fe} + (0.017F_{Tot})
Trials

Fluxing BOS/BF dust pellets using SiO$_2$

- 1450 °C for 22 minutes in air using alumina crucibles in a laboratory box furnace.
 - Pellets were hot charged into preheated crucibles and replaced into furnace. Furnace temperature stabilized after 5 minutes. Incomplete separation can be observed in as little as 10 minutes
- Control pellets without SiO$_2$ addition showed good reduction and zinc removal but no melting and slag separation
- Fluxed pellets rapidly underwent melting and separation however the molten slag attacked and destroyed crucibles through diffusion and alloying.
 - Recovery of Fe and Slag extremely challenging!
Mitigating the aggressive slag formed through the process

Slag Wetting onto Crucible Walls

- Pig Iron Nugget
- Slag
- Al$_2$O$_3$ crucible

Proposed Solution

- Pig Iron Nugget
- Slag Bead
- Carbon Bed
- Al$_2$O$_3$ crucible

Material selection for Crucibles

- The slag adhesion to the crucible causes a number of concerns
 - Alloying and thinning of crucible walls
 - Extremely short lived crucibles
 - Difficult to extract products for analysis
- Experiments with synthetic slag suggested that slag would not wet a graphitic surface
 - However, graphite oxidizes at a high rate at working temperatures and would still consume refractory at unacceptable rates in oxidizing atmosphere
- Trial of using a compacted bed of graphite within an Al$_2$O$_3$ crucible
Success!

- The yield of metallic pig iron was 91% from the starting pellet
 - Dust loses during initial heating and gasification
 - Emulsion loss to slag
 - FeO dissolved within slag
- Slag and iron physically separated with ease
- Zn in pig iron nugget at 0.01% initial levels of green pellet as determined by ICP
 - Small crystals of ZnO are observable around rim of crucible
Benchtop proof of concept

Outcomes

- It is experimentally possible to use an RHF type process to rapidly dezinc, carburize and melt BOS dust using BF dust, yielding pig iron nuggets by fluxing with SiO_2
 - Silica can be sourced flexibly, from sand, iron ore fines etc.
- Production of Pig Iron Nuggets in this manner is similar in reaction times to traditional RHF DRI production (such as in Fastmet) and only 100 °C hotter
- Zinc removal performance is excellent, more than satisfactory for recycling Zn bearing steelmaking by-products
- A modified Pig Iron Nugget process would be less reliant on expensive pellet binding agents
Forward Focus

- In principle, Pig Iron Nugget Production through an RHF while simultaneously removing zinc from steelmaking reverts has been demonstrated.
 - Explore key process mechanisms and parameters
 - Carburization, C_{fix}, Slag chemistry, heat treatment profile, pellet size etc.
 - Refractory material selection

- Value in Use modelling
- Energy/Mass balance for commercial scale unit
- Feasibility
- Cost Benefit and Risk Reward analysis
- Raw materials selection