A Best Practice Guide for Welding of Newly Developed Duplex Stainless Steel (UNS S82551) Seamless Pipes

25 February 2020

Kenta Yamada, University of Leicester

Dr. Kasra Sotoudeh, TWI Ltd

Professor Hongbiao Dong, University of Leicester
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
Martensitic and duplex stainless steels have been exploited by a wide range of industrial sectors for many years because of their availability, workability, strength, toughness and corrosion resistance.

In slightly H$_2$S-containing environments, super martensitic stainless steel (13Cr SMSS) pipes have been used in the oil and gas industries for many years.

In early 2000’s, girth welded joints in 13Cr SMSS were reported to be susceptible to SCC at HAZ in sweet conditions. Post weld heat treatment (PWHT) is effective at preventing SCC.

However, PWHT could have a negative impact on the efficiency of pipe laying operations in some cases.
1. Introduction - Background

Duplex stainless steels:
- 22Cr duplex (e.g. UNS S31803)
- 25Cr super duplex (e.g. UNS S39274)
 - Applicable in as-welded condition (No PWHT)
 - Widely used for flow line applications

However, these higher grade DSSs incur greatly increased cost

A new DSS containing 25Cr-5Ni-1Mo-2.5Cu has been developed (UNS S82551)*, which can be used in the as-welded condition in slightly sour conditions and has a lower cost than the existing DSS grades.

*D. Motoya, et.al; Eurocorr 2012
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
2. Material design concept

Concept of Material Design for New Alloy Grade

- **S13Cr**: Required PWHT for SCC resistance
- **Add Cr**: Enhancement of passive film stabilization
- **Difficult to maintain martensitic structure**

Existing DSS: Contain more than 3Mo for SSC resistance

- **Used for low amount of H₂S environment**
- **Lower cost than existing duplex stainless steel**

Material Design of SM70-2505 (UNS S82551)
2. Material design concept

Category of newly developed UNS S82551

- **Chemical composition of UNS S82551**
 - 25Cr-5Ni-1Mo-1Mn-2.5Cu-0.2N (mass%)

New material can be categorized as "Modified" grade from conventional duplex.

Development target
- Superior corrosion resistance without PWHT (>13CrSMSS)
- Lower price index than existing DSS (>22CrDSS, 25CrSDSS)
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
3. Performance of newly developed UNS S82551

Base metal properties

- Chemical compositions of production pipe for UNS S82551

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Cu</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>N</th>
<th>PREW</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>< 0.02</td>
<td>1.09</td>
<td>2.45</td>
<td>4.96</td>
<td>24.95</td>
<td>1.09</td>
<td>0.19</td>
<td>31.6</td>
</tr>
</tbody>
</table>

- Pipe making process

 Pipe making: Rotary single piercing - mandrel mill process
 Heat treatment: Solution heat treatment

![Pipe making process diagram](image)
3. Performance of newly developed UNS S82551

Base metal properties

- Chemical compositions of production pipe for UNS S82551

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Mn</th>
<th>Cu</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>N</th>
<th>PREW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 0.02</td>
<td>1.09</td>
<td>2.45</td>
<td>4.96</td>
<td>24.95</td>
<td>1.09</td>
<td>0.19</td>
<td>31.6</td>
</tr>
</tbody>
</table>

- Microstructure

 [Phase balance]
 Ferrite : Austenite
 approx. 50 : 50 (%)

 [Sigma phase]
 No Sigma phase precipitation
3. Performance of newly developed UNS S82551

Base metal properties

[Tensile properties]

- **Longitudinal**
- **Transverse**

<table>
<thead>
<tr>
<th>Yield Strength (MPa)</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td></td>
</tr>
<tr>
<td>490</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td></td>
</tr>
<tr>
<td>530</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
</tr>
<tr>
<td>570</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td></td>
</tr>
</tbody>
</table>

Specification of 70ksi grade(API 5L)

[Toughness properties]

- **Test Specimen**: 10 x 10, 2mm V notch
- **Direction**: Transverse

<table>
<thead>
<tr>
<th>Temperature (deg.C)</th>
<th>Absorbed energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-140</td>
<td></td>
</tr>
<tr>
<td>-120</td>
<td></td>
</tr>
<tr>
<td>-100</td>
<td></td>
</tr>
<tr>
<td>-80</td>
<td></td>
</tr>
<tr>
<td>-60</td>
<td></td>
</tr>
<tr>
<td>-40</td>
<td></td>
</tr>
<tr>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
3. Performance of newly developed UNS S82551

Welding record for UNS S82551 (OD273.1 x WT14.3 (mm)) by Nippon steel

<table>
<thead>
<tr>
<th>Process</th>
<th>GMAW</th>
<th>Filler Metal</th>
<th>Process</th>
<th>Current (Amps)</th>
<th>Volts</th>
<th>Speed (cm/min)</th>
<th>Heat Input (kJ/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root 1</td>
<td>25Cr SDSS</td>
<td>GMAW</td>
<td>148</td>
<td>20.6</td>
<td>42.8</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Fill 2-4</td>
<td>25Cr SDSS</td>
<td>PGMAW</td>
<td>172-185</td>
<td>20.4-21.2</td>
<td>37.4-38.5</td>
<td>0.57-0.59</td>
<td></td>
</tr>
<tr>
<td>Cap 5</td>
<td>25Cr SDSS</td>
<td>PGMAW</td>
<td>119</td>
<td>19.9</td>
<td>26.0</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

Joint design

![Joint design diagram](image)

Macro Photo

- **Preheat**
 - None
- **Interpass temp.**
 - 150°C max.
- **Shielding gas**
 - 69%Ar+30%He+1%CO₂ (30 L/min)
 - Back shield gas
 - Ar 100% (5 L/min)
- **PWHT**
 - Not applied
3. Performance of newly developed UNS S82551

Welding record for UNS S82551(OD273.1 x WT25.4 (mm)) by Nippon steel

<table>
<thead>
<tr>
<th>Process</th>
<th>GTAW</th>
<th>Position: <ASME 1G></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pass</td>
<td>Filler Metal</td>
</tr>
<tr>
<td></td>
<td>Root 1</td>
<td>25Cr SDSS</td>
</tr>
<tr>
<td></td>
<td>Fill 2-30</td>
<td>25Cr SDSS</td>
</tr>
<tr>
<td></td>
<td>Cap 31-34</td>
<td>25Cr SDSS</td>
</tr>
</tbody>
</table>

Joint design

![Joint design diagram](image)

Preheat None

Interpass temp. 150°C max.

Shielding gas Ar 100% (20 L/min)

Back shield gas Ar 100% (5 L/min)

PWHT Not applied
3. Performance of newly developed UNS S82551

Microstructure

Photo. GMAW welded joint of UNS S82551 (OD273.1mm x WT14.3mm)

<table>
<thead>
<tr>
<th>Pipe size</th>
<th>Fill</th>
<th>Ferrite Count</th>
<th>Position</th>
<th>ASTM E562</th>
<th>DNV OS F101 requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD273.1xWT14.3</td>
<td>GMAW</td>
<td>25Cr SDSS</td>
<td>Weld metal</td>
<td>45%</td>
<td>WM/HAZ: 35～65%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HAZ</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td>OD273.1xWT25.4</td>
<td>GTAW</td>
<td>25Cr SDSS</td>
<td>Weld metal</td>
<td>46%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HAZ</td>
<td>58%</td>
<td></td>
</tr>
</tbody>
</table>
3. Performance of newly developed UNS S82551

Hardness distribution

Test procedure: ASTM E384
Number of specimens: 2 specimens
Location: 1.5mm from both surfaces and 1/2 WT

<table>
<thead>
<tr>
<th>Position</th>
<th>Maximum hardness (Hv10) (GMAW/GTAW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside</td>
<td>294/303</td>
</tr>
<tr>
<td>Mid-wall</td>
<td>303/310</td>
</tr>
<tr>
<td>Inside</td>
<td>313/331</td>
</tr>
<tr>
<td>WM</td>
<td>289/294</td>
</tr>
<tr>
<td>HAZ</td>
<td>309/296</td>
</tr>
<tr>
<td></td>
<td>306/312</td>
</tr>
</tbody>
</table>

Performance of newly developed UNS S82551

Maximum hardness 350 Hv by DNV OS F101
3. Performance of newly developed UNS S82551

Charpy impact properties

Test procedure: ASTM A370
Test specimen: 10 x 10mm
Direction: Longitudinal
Test temp.: 0, -30, -47, -60, -80 deg.C

![Graph showing Charpy impact properties for different temperatures and materials.](attachment:image.png)

- **Base metal**
- **Weld metal**
- **Fusion line**
- **HAZ 2mm**

(a) GMAW Joint (OD273.1xWT14.3)
(b) GTAW Joint (OD273.1xWT25.4)

Mean: 45J
Single: 35J

DNV OS F101 Requirement
3. Performance of newly developed UNS S82551

SCC and SSC resistance

- **Test Method**: 4 point bent beam test
- **Specimen Size**: 115\(L\) x 15\(W\) x 3\(t\) (mm)
- **Position of Weld metal**: Center of specimen
- **Inner surface**: As intact
- **The other surface**: 600# paper finish
- **Applied stress**: 100% AYS
- **Number of specimens**: Two

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mark</th>
<th>Solution</th>
<th>pH</th>
<th>(H_2S)(MPa)</th>
<th>(CO_2)(MPa)</th>
<th>Temp. (deg.C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCC</td>
<td>X1</td>
<td>25wt%NaCl (Cl(^-):180,000mg/L)</td>
<td>4.5</td>
<td>0.004</td>
<td>0.096</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Y1</td>
<td>1.6wt%NaCl (Cl(^-):10,000mg/L)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSC</td>
<td>Y2</td>
<td>1.6wt%NaCl (Cl(^-):10,000mg/L)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y3</td>
<td>0.17wt%NaCl (Cl(^-):1,000mg/L)</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photo: Specimen of corrosion test
3. Performance of newly developed UNS S82551 Material

SCC resistance

<table>
<thead>
<tr>
<th>Material</th>
<th>Welding procedure</th>
<th>PWHT</th>
<th>Test condition</th>
<th>SCC results</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Method</td>
<td>Consumable</td>
<td>Cl [mg/L]</td>
<td>Temp. [°C]</td>
</tr>
<tr>
<td>UNS S82551</td>
<td>GMAW (1G)</td>
<td>25Cr SDSS</td>
<td>No</td>
<td>180,000</td>
</tr>
<tr>
<td>Weldable 13Cr</td>
<td>GMAW (5G)</td>
<td>25Cr SDSS</td>
<td>No</td>
<td>180,000</td>
</tr>
</tbody>
</table>

* ○: No SCC for UNS S82551
* : No SCC for UNS S31603*

* B.K.Holmes, et.al
Corrosion/2010, Paper No.10308

Applicable with as-welded condition

The application at wider region of temperature and Cl- than 316L can be expected.
3. Performance of newly developed UNS S82551

SSC resistance

<table>
<thead>
<tr>
<th>Material.</th>
<th>Solution</th>
<th>pH</th>
<th>H$_2$S (MPa)</th>
<th>Temp.</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNS S82551</td>
<td>0.17%NaCl (Cl$:1,000mg/L)</td>
<td>3.5</td>
<td>0.004</td>
<td>90 deg.C</td>
<td>No SSC</td>
</tr>
<tr>
<td></td>
<td>1.6%NaCl (Cl$:10,000mg/L)</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25%NaCl (Cl$:180,000mg/L)</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNS S82551 can be used in slightly sour conditions (≤0.004MPa) and has a lower cost than the existing DSS grades.
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
4. Conclusion

• A new duplex stainless steel containing 25mass%Cr- 5mass%Ni- 1mass%Mo- 2.5mass%Cu has been developed (UNS S82551), which is intended for flowline application in slightly sour environments.

• The characteristic property of this material is **SSC resistance in slightly sour conditions despite a lower molybdenum content** than that of the existing duplex stainless steels, and it can be used in the as-welded conditions because it is duplex stainless steels rather than super-martensitic stainless steel.

• The as-welded joints of this material provide sufficient mechanical properties as well as corrosion resistance in slightly sour conditions, therefore this material is considered to be **the most cost effective material** depending on the corrosion resistance required.
Outline

1. Introduction

2. Material design concept
 - Concept of Material Design for New Alloy Grade
 - Category of newly developed UNS S82551

3. Performance of newly developed UNS S82551
 - Base metal properties and weldability

4. Conclusion

5. Future plan
Nippon Steel and The Welding Institute (TWI) are collaborating on a development programme to establish best practice guide for welding of this new alloy grades.

Part 1: To evaluate the feature of developed DSS (Nippon steel in-house testing)
- Alloy design
- Performance of material (Mechanical and corrosion properties)

Part 2: To investigate the effect of welding condition on intermetallic precipitation, microstructure, mechanical and corrosion properties (conducted at TWI)
- The maximum heat input and interpass temperature limits for welding
- Modelling approach (Metallurgical model with welding heat transfer)
Thank you for your attention.