

The effects of deep cryogenic treatment and austenitising temperature on tempering behaviour of En 31 bearing steel

Kyle G.M. Nicholls¹, Prof. Rob Thornton^{2,3*}, Dr. David Weston², Dr. Dimitrios Statharas²

¹EPSRC Innovative metal processing CDT, School of Engineering, University of Leicester, LE1 7RH, UK, ²School of Engineering, University of Leicester, LE1 7RH, UK, ³Warwick Manufacturing Group (WMG), The University of Warwick, Coventry, CV4 7AL, UK. (*rob.thornton@warwick.ac.uk)

—A—B—C—D

XRD

1123 K

AB

1. Introduction

- Retained austenite (RA) in through-hardened roller bearings fabricated from En 31 bearing steel (1C-1.5Cr wt.%) is undesirable as its thermal and mechanical instability compromises wear performance and dimensional stability.
- Up to 10 wt.% RA can remain in the microstructure after hardening [1].
- Additional tempering cycles to decompose RA may coarsen cementite and excessively soften the martensite, sacrificing the hardness and strength required to resist repeated contact stresses of 3 GPa [2 & 3].
- Deep cryogenic treatment (DCT) is a supplementary treatment step in between hardening and tempering of steel, providing permanent microstructural change not attainable by conventional heat treatment (CHT) processes alone.
- DCT is reported to convert austenite to martensite [4], induce compressive strains in untransformed austenite [5] and enhance carbide precipitation [6] in hardenable steels.
- DCT therefore represents means of improving dimensional stability beyond the capability of CHT processes, by eliminating or stabilising RA.
- This work will aim to establish the correlation between austenitising conditions and

Phase transformations during Tempering

the effectiveness of DCT by analysing the stages of tempering.

2. Methodology

- Process routes A, B, C & D (Figure 1) prior to and after tempering.
- Micro-hardness testing.
- Volume fractions and lattice parameters determined by Rietveld refinement with X-ray diffraction (XRD) data using Materials Analysis Using Diffraction (MAUD) software
- Dilatometry used to detect phase transformations during tempering.
- Subsequent kinetic analysis performed using the Kissinger method with multiple heating rates to determine activation energies of the stages of tempering.
- Stage I: pre-precipitation processes <373 K, Stage II: precipitation of transition carbides 353-473 K, Stage III: decomposition of RA 513-593 and Stage IV: precipitation of Fe₃C 533-750 K.

3. Results **Pre-tempering**

Table 1: The volume fractions, lattice parameters and carbon contents in austenite of the four processing routes

Process route	Volume fraction (%)			Lattice parameter (Å)			α′ (c/a)	C content in γ , (wt.%)
	lpha'	γ	Fe ₃ C	α'_a	α'_{c}	γ		
А	84.885	10.197	4.9180	2.8644	2.8925	3.5861	1.0098	0.6346
В	87.558	7.4355	5.0065	2.8632	2.8909	3.5902	1.0096	0.7267

Figure 4: XRD patterns of (a) A vs B and (b) C vs D. All RA in all four processing routes is decomposed beyond the detection limit of the XRD.

> Table 3: Activation energies E_a determined by a Kissinger analysis of the stages of tempering.

Process	Activation Energy, <i>E_a</i> (kJ mol ⁻¹)					
route	Stage II	Stage III	Stage IV			
A	112	145	134			
В	113	130	153			
C	134	146	199			

C 67.675 32.325 - 2.8626	2.8918	3.5968	1.0102	0.8703
--------------------------	--------	--------	--------	--------

73.404 26.596 -2.8620 2.8892 3.5993 1.0095 0.9263 D

Table 2: The Micro-hardness results for process routes A, B, C and D.

Process route	Mean HV ₀₁	Coefficient of variation (%)	SD
А	804	2.73	21.9
В	818	3.24	26.5
С	722	3.90	28.2
D	807	4.65	37.5

Acknowledgements: Kyle Nicholls wishes to acknowledge EPSRC CDT (Grant No: EP/S515486/1) in Innovative Metal Processing, the Henry Royce Institute at the University of Manchester for dilatometry (EPSRC grant EP/R00661X/1), and the Advanced Microscopy Facility (AMF) at University of Leicester.

Engineering and Physical Sciences Research Council

136 124 142 D

4. Conclusions

- DCT reduces the activation energy required for austenite decomposition for all austenitising temperatures.
- DCT reduces austenitic volume fraction, although carbon content in austenite marginally increases thermal stability and resistance to transformation.
- DCT produces an enhanced transition carbide precipitation and Fe₃C precipitation in high austenitised samples, no significant changes in lower austenitised samples.
- DCT increases hardness in higher austenitised samples, a result of the austenite to martensite transformation and the increased carbon in austenite.

References

[1] W. Cui et al., Mat Sci & Eng. A, 2018, [2] D. Das et al., Mat Sci Eng., 2010, [3] H. J. Christ, Fatigue & Fracture of Eng. Mat & Structures, 1992, [4] R. F. Barron, Cryogenics, 1982, [5] M. Villa et.al., Acta Materialia, 2014, [6] D. Das et.al., Mat & Manufacturing Pro, 2007

UNITED KINGDOM · CHINA · MALAYSIA