
The effects of deep cryogenic treatment and austenitising 
temperature on tempering behaviour of En 31 bearing steel 

1. Introduction 
• Retained austenite (RA) in through-hardened roller bearings fabricated from En 31

bearing steel (1C-1.5Cr wt.%) is undesirable as its thermal and mechanical instability
compromises wear performance and dimensional stability.

• Up to 10 wt.% RA can remain in the microstructure after hardening [1].
• Additional tempering cycles to decompose RA may coarsen cementite and excessively

soften the martensite, sacrificing the hardness and strength required to resist
repeated contact stresses of 3 GPa [2 & 3].

• Deep cryogenic treatment (DCT) is a supplementary treatment step in between
hardening and tempering of steel, providing permanent microstructural change not
attainable by conventional heat treatment (CHT) processes alone.

• DCT is reported to convert austenite to martensite [4], induce compressive strains in
untransformed austenite [5] and enhance carbide precipitation [6] in hardenable
steels.

• DCT therefore represents means of improving dimensional stability beyond the
capability of CHT processes, by eliminating or stabilising RA.

• This work will aim to establish the correlation between austenitising conditions and
the effectiveness of DCT by analysing the stages of tempering.
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2. Methodology 
• Process routes A, B, C & D (Figure 1) prior to and

after tempering.
• Micro-hardness testing.
• Volume fractions and lattice parameters

determined by Rietveld refinement with X-ray
diffraction (XRD) data using Materials Analysis
Using Diffraction (MAUD) software

• Dilatometry used to detect phase transformations
during tempering.

• Subsequent kinetic analysis performed using the
Kissinger method with multiple heating rates to
determine activation energies of the stages of
tempering.

• Stage I: pre-precipitation processes <373 K, Stage
II: precipitation of transition carbides 353-473 K,
Stage III: decomposition of RA 513-593 and Stage
IV: precipitation of Fe3C 533-750 K.
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4. Conclusions
• DCT reduces the activation energy required for austenite decomposition for

all austenitising temperatures.
• DCT reduces austenitic volume fraction, although carbon content in austenite

marginally increases thermal stability and resistance to transformation.
• DCT produces an enhanced transition carbide precipitation and Fe3C

precipitation in high austenitised samples, no significant changes in lower
austenitised samples.

• DCT increases hardness in higher austenitised samples, a result of the
austenite to martensite transformation and the increased carbon in austenite.

Process
route

Volume fraction 
(%)

Lattice parameter 
(Å)

𝜶′

(c/a)
C content in 
𝜸, (wt.%)

𝛼′ 𝛾 Fe3C 𝛼′a 𝛼′c 𝛾

A 84.885 10.197 4.9180 2.8644 2.8925 3.5861 1.0098 0.6346

B 87.558 7.4355 5.0065 2.8632 2.8909 3.5902 1.0096 0.7267

C 67.675 32.325 - 2.8626 2.8918 3.5968 1.0102 0.8703

D 73.404 26.596 - 2.8620 2.8892 3.5993 1.0095 0.9263

Phase transformations during Tempering 
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Table 1: The volume fractions, lattice parameters and carbon contents in austenite of the four 
processing routes

Process 
route

Mean
HV01

Coefficient 
of variation (%) 

SD

A 804 2.73 21.9

B 818 3.24 26.5

C 722 3.90 28.2

D 807 4.65 37.5
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Figure 2: (a) dilatational strain (∆L/L0) on tempering  for samples A and B, (b) for process 
routes C and D.  
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Table 2: The Micro-hardness results for process routes A, B, C and D. 

Process
route 

Activation Energy, Ea (kJ mol-1)

Stage II Stage III Stage IV

A 112 145 134

B 113 130 153

C 134 146 199

D 136 124 142

Table 3: Activation energies Ea determined by a Kissinger 
analysis of the stages of tempering.  

Figure 1: The four microstructural 
processing routes and 

characterisation performed.
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Figure 4: XRD patterns of (a) A vs B and (b) C vs D. All RA in all four processing routes is 
decomposed beyond the detection limit of the XRD. 

Figure 3: The derivative of the dilatational strain d/dT(∆L/L0) from Figure 2 shows the stages of 
tempering. Peak maxima's used as the temperatures of inflection for the Kissinger analyses of 

each stage.  
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