

The Effects of Deep Cryogenic Treatment on PVD – TiN coated AISI M2 high speed steel

Name: Christian Chiadikobia

Supervisors: Prof. Rob Thornton^{a,b}, Dr Dave Weston^a, Dr Dimitrios Statharas^a

^aSchool of Engineering, University of Leicester; ^bWarwick Manufacturing Group (WMG), The University of Warwick

- Background
- Motivation
- PhD Approach
- Experimental workflow
- Results
- Next step
- Conclusion
- References and Acknowledgement

Background

S

• How we understand it

- 213K to 193K (-60 to -80 °C)
- 193 to 113 K (-80 to -160 ° C)
- 113 to 77 K (-160 to -196 ° C)
- CT practice

Industry: Restricted parameters, one cycle, varying practice – LN₂ or N₂, large batches

Research: Entire process, small quantities, N₂ cooling medium

Background

S

CT Applications (Not limited to)

- Manufacturing Cutting tools
- Automobile Brake Discs, Gears
- Medical knives

Some applications CT materials – coated

Motivation

AISI D2	-80	63.4 HRC	Reference [1]
AISI D2	-196°C	63.7 HRC	Reference [2]

AISI D2: Max Hardness (-80 to -110 °C) [1]

Motivation

Research Council

Effect of the cryogenic treatment on the tool hardness AISI M2: (-196 °C) [4]

			(-196 °C/24 h) [6]			
Treated tools	HRc	Untreated tools	HRc	AISI M2 + TiN	DCT + TiN	153% tool life
A	66	D	66			improvement
В	65	Е	65	AISI M2 + TiN	TiN + DCT	109 % tool life
С	66	F	66			improvement
EPSRC Engineering and Physica	al Sciences	UNIVERSITY OF LEICESTER		UNIVERS BIRMINO	SITYOF GHAM	The University of Nottingham

Approach

Experimental workflow

Coating set up/ process [Ref 8]

CT set up /technology [9]

Results – Bulk structure

SEM Micrograph : Q+T+Coat – Coating surface

SEM Micrograph : Q+T+Coat+DCT – Coating surface

Coating cross section

SEM micrograph: Q+T+Coat – Cross section

SEM micrograph: Q+T+Coat+DCT – Cross section

 Thickness - mean 2.33 (±0.01) μm, underlayer appro. 298 (±0.03) nm

Coating cross section

Surface roughness of the system and standard deviation

Material	Surface Roughness (Ra)
Q+T	0.04 ± 0.02
Q+T+DCT	0.04 ± 0.02
Q+T+Coat	0.05 ± 0.002
Q+T+Coat+DCT	0.05 ± 0.001

a) Line scan on cross section: Q+T+Coat

b) Line scan on cross section: Q+T+Coat+DCT

Scratch tracks

Engineering and Physical Sciences

Research Council

5

Q+T+Coat

Fig. 6a Split up image from optical profiling microscope showing the scratch tracks to complete substrate exposure (for Q+T+Coat sample). SEM micrograph showing the Lc positions and cracks observed: (6b) Lc1 – 16.44 N (6c) Lc2 – 47.47 N (6d) Lc3 – 55.82 N (substrate exposure)

Q+T+Coat+DCT

Fig. 6e Split up image from optical profiling microscope showing start of scratch tracks to the substrate exposure (for Q+T+Coat+DCT sample). SEM micrograph showing the Lc positions and cracks observed: (6f) Lc1 – 19.47 N (6g) Lc2 – 49.32 N (6h) Lc3 – 57.84 N (substrate exposure)

Lc positions

5

Table: 1 Results of scratch test and standard

deviation

Samples	Lc1	Lc2	Lc3
Q+T+Coat	16.44 ± 2.08	47.47 ± 2.03	55.82 ± 2.92
Q+T+Coat+DCT	19.47 ± 1.70	49.32 ± 2.02	57.84 ± 3.11

Chevron, transverse and tensile cracks

- Chevron cracks either side of scratch centre line as well as cracks
- High Lc irregular pattern cracks fit into track and open away, perpendicular to the direction of the scratch.
- Denser and extensive
- Modulus and hardness

Q+T+Coat+DCT

Modulus Measurement

Hardness Measurement

Summary table of mechanical properties

Table: 2 Summary table of the measured mechanical properties of the system and standard deviation

Material condition (Coating/substrate)	Elastic modulus (GPa)	Indentation Hardness (GPa)	Elastic modulus ratio (GPa) – E _{co} /E _{su}
Q+T+Coat	267.46 ± 13.40	20.15 ± 1.46	
Q+T+Coat+DCT	307.07 ± 14.05	21.19 ± 1.34	
Q+T	169.41 ± 17.56	7.14 ± 1.21	
Q+T+DCT	184.54 ± 13.06	7.86 ± 0.80	
Q+T+Coat - Eco/Esu			1.58 ± 0.04
Q+T+Coat+DCT - Eco/Esu			1.66 ± 0.04

Table: 3 T-statistics for the measured values

T statistic	Test statistics	Test statistics (Q+T &	Test statistics	Test statistics (Q+T
	(Q+T+Coat &	Q+T+ DCT) - Modulus	(Q+T+Coat & Q+T+	& Q+T+ DCT) -
	Q+T+Coat+DCT) -		+Coat+DCT) -	Hardness
	Modulus		Hardness	
P - value	2.2572E-19	4.67168E-05	0.001248378	0.002026
Remark	Significant	Significant	Significant	Significant

- Elastic modulus Lc 1 and Lc 2
- Hardness Lc 3
- 3.62%

Diffraction pattern

• Q+T+Coat & Q+T+Coat+DCT exhibit similar pattern -Preferred orientation (111)

- TiN films: reflections corresponding to (111), (200), (220) and (311) was found at 36.51°, 42.57°, 61.37° and 72.26° respectively
- Substrate: reflections corresponding to (110), (200) and (211) assigned to 44.25°, 64.37° and 81.62° respectively

$$\beta_T \cos \theta = \varepsilon (4 \sin \theta) + \frac{K\lambda}{L}$$

Y = mx + cY = $\beta_T \cos \theta$; m = ε ; x = 4 sin θ ; c = $\frac{K\lambda}{L}$

Where:
$$\beta_T = \beta_D + \beta_{\varepsilon}$$
; and $\beta_D = \frac{k\lambda}{L\cos\theta}$; $\beta_{\varepsilon} = 4\varepsilon \tan\theta$; $L = \frac{k\lambda}{\beta_D\cos\theta}$

 β_T : Total broadening of the peak (combine effect of broadening due to the crystallite size (β_D) and broadening due to strain (β_{ε}));

L: Average crystallite size;

K: shape factor (constant 0.9)

 β_D : full width at half maximum (FWHM) broadening of peak (radians);

 θ : peak positions (radians).

 λ : 0.15406 nm (x-ray source); ϵ : strain

W-H: Crystallite size and strain

5

Plot of β t cos θ against 4 sin θ for Q+T+Coat

36.78 (±8.76) nm and strain of 0.00377 (±0.00634) %

• Constant, more scatter away from the fit

Q+T+Coat+DCT

Plot of $\beta t \cos \theta$ against 4 sin θ for Q+T+Coat+DCT

71.74 (±1.76) nm and strain of 0.00194 (±0.00908) %

- Constant, less scatter away from fit
- 71.47 (±1.76) nm, while strain decreased to 0.00194 (±0.00908) (0.49% reduction)

Q+T+Coat

Coating Morphology

Cross section of Q+T+Coat via TEM - 80 000 mag

Cross section of Q+T+Coat+DCT via TEM - 80 000 mag

Structure zone Model 8]

 1- Open fibrous like arrangement
T-fine grained, densely packed fibrous grains
2-fairly dense columnar grains
3-large recrystallised equiaxed grains

Conclusions

- Improvement 3.62%
- Combination of Elastic modulus and hardness
- Elastic modulus Lc 1 and Lc 2
- Hardness Lc 3

1. Collins, D. N. and Dormer, J., *Deep Cryogenic Treatment of a D2 Cold-work Tool Steel. Heat Treatment of Metals*. 1997. **3**: pp. 71-74.

2. Das, D., et al., *Effects of Deep Cryogenic Treatment on the Carbide Precipitation and Tribological Behaviour of D2 Steel*. Materials and Manufacturing Processes, 2007. **22**(4): pp. 474-480.

3. Gill, S.S., et al., *Effects of Deep Cryogenic Treatment on AISI M2 High Speed Steel: Metallurgical and Mechanical Characterization*. Journal of Materials Engineering and Performance, 2012. **21**(7): pp. 1320-1326.

4. Da Silva, F. J., et al., Performance of Cryogenically treated HSS tools. Wear, 2006. 261(5): pp. 674-685.

5. Kelkar, R., et al., Understanding the Effects of Cryogenic Treatment on M2 Tool Steel Properties. Heating Treating Progress, 2007. 7(5): pp. 57-60.

6. Mohan lal, D., et al., Cryogenic treatment on argument wear resistance of tool and die steels. Cryogenics, 2001. 41(1): pp. 149-155.

7. Zhang, Z. and Dong, H., Surface Engineering Technologies. IMPaCT CDT lecture slide - Bham, 2018.

8. Slatter, T., and Thornton, R., *Cryogenic Treatment of Engineering Materials in Comprehensive Materials Finishing*, M.S.J. Hashmi, Editor. 2017, Elsevier: Oxford. Pp. 421-454.

Acknowledgements

- IMPaCT CDT is supported by EPSRC grant EP/R512308/1 & EP/L016206/1
- Jim Benson Cryogenics Ltd (Industrial Partner)
- Advanced Microscopy Facility University of Leicester
- Loughborough Materials Characterisation Centre Loughborough University

Thank you for your attention

