

The road to net zero, the testing of a new hybrid fuel for sintering

Sam Reis MEng 902162@swansea.ac.uk

Engineering and Physical Sciences Research Council

Cronfa Gymdeithasol Ewrop European Social Fund

Iron ore sintering and its impacts

 But what if we used "new" carbon to curve the lifecycle and offset carbon emissions.

- A crucial process to convert low cost iron ore fines to blast furnace feed.
- Typically "ancient" carbon provides the heat flux to agglomerate the ores.
- Results in an unsustainable linear lifecycle.

PT breeze vs Ecoke®

Sample	Prox	kimate anal <u>y</u> (% by mass)	ysis	Calorific value		
	Fixed Carbon	Volatile (MJ/kg) Matter Ash	Ecoke®			
Ecoke®	78.7	13.3	8.9	27.9		
PT Breeze	83.4	7.4	9.2	26.5	PT breeze	

Burnout properties

Reaction Kinetics

Sintering experiments

Iron baring material	%
Ore A	19.34
Ore B	25.07
Ore C	21.25
Ore D	19.34
Sinter fines	15.00

Sinter conditions	Value
Moisture	6.5%
Fuel rate	7%

Sintering results

- With increasing Ecoke[®] content maximum temperatures within the pot rise at both TC 3 and TC 5.
- Maximum temperature at both TC 3 and 5 achieved by the EC75 blend.
- Little adverse affect on the sinter temperature profile is seen with increasing Ecoke[®] content.

Sintering results cont...

- Time spent over 1100 °C increases up to EC50
- Decreases at EC75 in contrast with higher maximum temperature

Total time over 1100 °C (0-100% EC)

Yield and size distribution

Sample	Yield
EC0	63.24
EC25	71.64
EC50	60.32
EC75	69.16

- Yield increases at EC25
- Drops slightly at EC75 but still higher than EC0
- All Ecoke® blends have a higher proportion of +15mm sinter than EC0

XRD

- XRD scans of 50um crushed sinter
- Show very similar peaks with magnetite and hematite present
- Also present are ferrosilicates

Conclusions

- In lab testing Ecoke[®] showed that it has a large calorific value due to its high fixed carbon.
- Compared to PT Breeze Ecoke[®] has a lower activation energy therefore being easier to ignite.
- During sintering trials Ecoke[®] exceeded temperatures produced by PT breeze and had similar yields
- EDS analysis showed a porous structure with patches of SFCA material
- XRD analysis shows the presence of ferrosilicates but more work to be done increasing resolution and peak identification

Any Questions?

Sam Reis MEng 902162@swansea.ac.uk

Engineering and Physical Sciences Research Council

Cronfa Gymdeithasol Ewrop European Social Fund