

A Rapid CCT Predictor for Low Alloys Steels, & its Application to Compositionally Heterogeneous Material

By J. Collins, M. Piemonte, M. Taylor, J. Fellowes and E. J. Pickering 6th Postgraduate Research Symposium on Ferrous Metallurgy, Feb. 2023

What is a CCT?

- Continuous Cooling Transformation (CCT) diagram
- Presents which constituents will transform on cooling
- Understand steel behaviour
- Optimise microstructure & properties

Why is this Important?

- Many commercial steel heat treatments involve a continuous cool
 - Forging/hot rolling
 - Austenitisation treatments
 - Homogenisation treatments
- Modelling CCT behaviour allows:
 - Better predict microstructure & properties
 - Save time (+ money)

Modelling CCTs – The Li Model

- Based off semi-empirical equations for isothermal transformation behaviour
 - Originally developed by Kirkaldy & Venugopalan ^[1], but modified by Li et al. ^[2]

[1]: Kirkaldy and Venugopalan, Prediction of Microstructure and Hardenability in Low Alloy Steels, *Proceedings of an International Conference on Phase Transformations in Ferrous Alloys*, AIME (1984), 125.

[2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, *Metallurgical and Materials Transactions B*, 29 (1998), 661.

Modelling CCTs – The Additivity Rule

[3]: E. Scheil. Anlaufzeit der Austenitumwandlung. Archiv für das Eisenhüttenwesen, 8:565–567, 1935.

Modelling CCTs – The Li Model

[2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, *Metallurgical and Materials Transactions B*, 29 (1998), 661.

[3]: E. Scheil. Anlaufzeit der Austenitumwandlung. Archiv für das Eisenhüttenwesen, 8:565–567, 1935. [4]: C. Y. Kung and J. J. Rayment. An Examination of the Validity of Existing Empirical Formulae for the Calculation of Ms Temperature. Metallurgical Transactions A, 13:328–331, 1982.

Modelling CCTs – The Li Model (SA-540 B24)

Modelling CCTs – The Li Model (SA-540 B24)

Modelling CCTs – The Li Model (SA-540 B24)

Modifying the Li Model – Carbon Partitioning

- The Li Model doesn't consider
 <u>Carbon Partitioning</u>
- As austenite transforms into ferrite:
 - Ferrite kicks out excess carbon
 - Enriching the austenite with carbon
 - Altering the stability of austenite

Modifying the Li Model – Carbon Partitioning

 Concentration of carbon in untransformed austenite ^[5]:

- Upper bainite/ferrite:
 - s = 0.03 wt.% C
- Lower bainite:
 - s = 0.27 wt.% C

[5]: H. K. D. H. Bhadeshia and D. V. Edmonds. The Mechanism of Bainite Formation in Steels. Acta Metallurgica, 28:1265–1273, 1980.

Upper-to-Lower Bainite Transition, L_s

 Model developed by Takahashi and Bhadeshia ^[6]:

 $t_{\rm d} = \frac{w^2 \pi (\bar{x} - x^{\alpha \gamma})^2}{16D(x^{\gamma \alpha} - \bar{x})^2}$

• Ferrite decarburisation, t_d:

• Cementite precipitation, t_{θ} :

$$\xi(t) = 1 - \exp\left(k \, t^{0.62}\right)$$

[6]: M. Takahashi and H. K. D. H. Bhadeshia. Model for transition from upper to lower bainite. Materials Science and Technology, 6:592–603, 1990.

Modifying the Li Model

[2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, *Metallurgical and Materials Transactions B*, 29 (1998), 661.

[3]: E. Scheil. Anlaufzeit der Austenitumwandlung. Archiv für das Eisenhüttenwesen, 8:565–567, 1935. [7]: D. P. Koistinen and R. E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. *Acta Matllurgica*, 7:59-60, 1959.

Modelling CCTs – The Final Product (SA-540 B24)

Modelling CCTs – The Final Product (SA-540 B24)

						A	Ae₃=750°C	
SA-540		700	Rate (°C/s)	Xf (%)	Xp (%)	Xb (%)	Aeı= Xm (%)	712°C
	Wt.%	600 -	0.1	1	-	74 69	24	24 30 67 90 97 99
С	0.40	<u> </u>	0.2	-	-		30	
Si	0.26	0.) a	0.5	-	-	32	67	
Mn	0.75	- 004	1	-	-	9	90	
Ni	1.81	- 005 J	2	-	-	2	97	
Cr	0.86	Le Le	5	-	-	-	99	
Мо	0.32	200 -	10	-	-	-	99	Better martensite (suppressed)
		100	20	-	-	-	99	
		100 -	50	-	-	-	99	
		0 10 ⁰	101		10 ² Time (s)	10 ³		10 ⁴
			Experimental C	CCT f	р	bu bl	m	
					advanced			

Modelling CCTs – Hardness Predictions (SA-540 B24)

[8]: R. Blondeau, Ph. Maynier, J. Dollet, and B. Vieillard-Baron. mathematical model for the calculation of mechanical properties of low-alloy steel metallurgical products: a few examples of its applications. In Heat Treatment '76, page 189,

Accounting for Compositional Heterogeneity

Compositional Heterogeneity – EPMA (SA-540 B24)

Compositional Heterogeneity – Applying the Model

Applying the Model – Phase Maps (SA-540 B24)

Applying the Model – Hardness Maps (SA-540 B24)

Applying the Model – Hardness (SA-540 B24)

Applying the Model – CCT (SA-540 B24)

Advantages of My Model

- Rapid simulation times
 ~ 10s per CCT
- 2. Improved CCT predictions
 - Novel modifications
- 3. Expanded predictive capabilities
 Outputs final constituent fractions
- 4. Improved versatility
 - Adapted well into more complex model
- 5. Free, open source & accessible

Thank you for Listening

The authors gratefully acknowledge the EPSRC (Engineering and Physical Sciences Research Council, UK), SFI (Science Foundation Ireland) and Rolls-Royce for their financial support.

Add me on LinkedIn!

Check out my CCT predictor!

Modelling CCTs – Li Equations

[2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, *Metallurgical and Materials Transactions B*, 29 (1998), 661.

Modelling CCTs – Transformation Start Equations

[9]: R. A. Grange. Estimating Critical Ranges in Heat Treatment of Steels. *Metal Progress*, 79:73–75, 1961. [10]: S-J. Lee and Y-K. Lee. Thermodynamic Formula for the Acm Temperature of Low Alloy Steels. ISIJ International, 47:769–771, 2007. [2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, *Metallurgical and Materials Transactions B*, 29 (1998), 661.

[4]: C. Y. Kung and J. J. Rayment. Metallurgical Transactions A, 13:328–331, 1982.

Modelling CCTs – K-M Equations

$$X_{\rm M} = X_{\rm A}^0 (1 - \exp(-k(M_s - T)))$$

$$k = \frac{-\ln(0.01)}{M_{\rm s} - M_{\rm f}}$$

[7]: D. P. Koistinen and R. E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. *Acta Matllurgica*, 7:59-60, 1959.

Upper-to-Lower Bainite Transition, L_s

[6]: M. Takahashi and H. K. D. H. Bhadeshia. Model for transition from upper to lower bainite. Materials Science and Technology, 6:592–603, 1990.

Incomplete Reaction Phenomenon

- The sudden halt in bainite transformation
 - Austenite carbon concentration increases
 - The free energy change for transformation tends to 0

xc = at.% of carbon

Predefined constants

advanced

- $\Delta G_{(\gamma \rightarrow \alpha)} = 0$
- Described by the TO' equation:

$$T_0'(K) \simeq 970 - 80 x_{\rm C} - \Delta T_0$$

 $\Delta T_0 = \frac{\sum_i x_i (b_{NM} \Delta T_{NM_i} + b_M \Delta T_{M_i})}{b_{NM} + b_M}$

xi = at.% of substitutional alloying element, i.

[11]: H. Bhadeshia and R. Honeycombe. Steels: Microstructure and Properties, chapter 15, pages 421–455. Butterworth-Heinemann, 4th edition, 2017.

SA-540 B24 – Prior Austenite Grain (PAG) Size

SA-540 B24 – Prior Austenite Grain (PAG) Size

Comparing Other Models (SA-540 B24)

Modelling CCTs – The Li Model (En3B)

Modelling CCTs – My Model (En3B)

Modelling CCTs – Hardness (En3B)

Modelling CCTs – The Li Model (En8)

Modelling CCTs – The My Model (En8)

Modelling CCTs – Hardness (En3B)

Model Boundary Conditions

Transformation Limits - Pearlite

[12]: M. V. Kral. Phase Transformation in Steels, chapter 7, pages 225-275. Woodhead Publishing, Volume 1, 2012.

References

[1]: Kirkaldy and Venugopalan, Prediction of Microstructure and Hardenability in Low Alloy Steels, Proceedings of an International Conference on Phase Transformations in Ferrous Alloys, AIME (1984), 125.

[2]: Li et al., A Computational Model for the Prediction of Steel Hardenability, Metallurgical and Materials Transactions B, 29 (1998), 661.

[3]: E. Scheil. Anlaufzeit der Austenitumwandlung. Archiv für das Eisenhüttenwesen, 8:565–567, 1935.

[4]: C. Y. Kung and J. J. Rayment. Metallurgical Transactions A, 13:328–331, 1982.

[5]: H. K. D. H. Bhadeshia and D. V. Edmonds. The Mechanism of Bainite Formation in Steels. Acta Metallurgica, 28:1265–1273, 1980.

[6]: M. Takahashi and H. K. D. H. Bhadeshia. Model for transition from upper to lower bainite. Materials Science and Technology, 6:592–603, 1990.

[7]: D. P. Koistinen and R. E. Marburger. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica, 7:59-60, 1959.

[8]: R. Blondeau, Ph. Maynier, J. Dollet, and B. Vieillard-Baron. mathematical model for the calculation of mechanical properties of low-alloy steel metallurgical products: a few examples of its applications. In Heat Treatment '76, page 189,

[9]: R. A. Grange. Estimating Critical Ranges in Heat Treatment of Steels. Metal Progress, 79:73–75, 1961.

[10]: S-J. Lee and Y-K. Lee. Thermodynamic Formula for the Acm Temperature of Low Alloy Steels. ISIJ International, 47:769–771, 2007.

[11]: H. Bhadeshia and R. Honeycombe. Steels: Microstructure and Properties, chapter 15, pages 421–455. Butterworth-Heinemann, 4th edition, 2017.

[12]: M. V. Kral. Phase Transformation in Steels, chapter 7, pages 225-275. Woodhead Publishing, Volume 1, 2012.

