

Cronfa Gymdeithasol Ewrop European Social Fund

EngD Student: Lauren McLean

Oxidation of a Dual Phase Steel during Rapid Alloy Prototyping (RAP)

> Dr. Hollie Cockings Dr. Shahin Mehraban Dr. Didier Farrugia Dr. Douglas Figueroa-Gordon Prof. Nicholas Lavery

Contents

Project Background

Focus area: oxide growth and evolution

> Where does this occur during steelmaking?

> Why is this important?

- Surface quality
- Material losses

Material: DP800

Project Background

Rapid Alloy Prototyping

- Traditional Alloy Development Route

 Iaboratory scale VIM prior to upscaling to full plant trials
- \succ Aim of the work \rightarrow Explore capabilities of RAP for surface and oxidation studies

RAP Configuration in this study – simulates the integrated steelmaking and rolling route

Rapid Alloy Prototyping

Industrial Benefits

- 1. More efficient alloy development
- 2. Transform steel innovation cycle
- Reduce screening times whilst feeding a diverse supply chain
- 4. Allows manipulation of properties

Environmental Benefits

- Fewer emissions when producing miniature samples
- Less material wastage during testing/alloy development

Economic Benefits

Rapid Alloy Prototyping

Sample Generation

Re-melted DP800 transfer bar

(Produced at Tata Steel, reduced thickness, machined into 200g blocks for melting)

Optical Emission Spectroscopy (OES)

С	Si	Mn	Р	S	Cr	AI	Nb	Ті	Fe
0.13	0.3	1.5	0.0117	0.003	0.54	0.01	0.023	0.01	Bal

Centrifugal casting

- Induction melting
- Inert atmosphere
- Rotation of melt at high speed

Homogenised, low porosity cast

As-cast RAP

Centrifugally cast @ 1700°C 360rpm/3 mins – inert atmosphere Water guenched to room temp once solidified

Fully bainitic substrate microstructure

Scale explicative of liquidous metal-oxide form

SEM image of as-cast microstructure

Work supported by MACH1 team @ Swansea University

SURFACE

Swansea University

As-cast RAP

Centrifugally cast @ 1700°C 360rpm/3 mins – inert atmosphere Water quenched to room temp once solidified

Reheating RAP

- Feeder removed - Primary surfaces machined

Homogenization

Reheated for 1 hour @ 1230°C Work supported by MACH1 team @ Swansea University

Reheated RAP

SURFACE

SEM

Swansea University

Reheated RAP

Agreement with literature – evidence of Si at interface and along fracture regions

Commonly observed in Si-containing steels

Mikl et al, JCME, 2021

Oxidation of a 0.6Si steel @ 1200°C for 15 mins - Si/Cr enrichment at interface/pegs Further investigation to ensure correct Si presence in Fe_2SiO_4 phase:

SEM image of oxidation on reheated sample cross section

Reheated RAP

Phase quantification?

Evidence of brittle oxide cracking:

Image of reheated surface

SEM images of internal oxidation on reheated sample cross section

Hot Rolled RAP

Reheated @ 1230°C for 5 mins in air Hot rolling temperatures:

- 1190°C entry
- 850°C exit

7.7mm -> 3.5mm (58% reduction single pass) Ferrite-martensite, 33% pearlite

Roll direction Transverse cracking Roll contact grooves Lens Z100:X100 500um

Image of hot rolled surface

General topography in agreement with literature (i.e., presence of transverse cracking/roughness)

Evidence of roll contact grooves at the surface – literature suggests mechanical feature could present sites of entrapment

Swansea University

Hot Rolled RAP

Scale is extremely well-adhered

Internal cracking a result of hot deformation but also interior shrinkage - cooling still important

Scale micro- and phase structures are synonymous with literature

OATED

Han et al, Mat Res, 2019 0.3Si steel HR @ 1000°C

SEM image of hot rolled sample cross section

A study of DP800 has been used to demonstrate the current oxidation capabilities

The viability of using RAP as a methodology of understanding oxidation behaviour

- Some RAP stages lend themselves better to oxidation studies than others
 - 1. Reheating
 - 2. Hot rolling
- Some stages are not suitable
 - 1. As-cast

Thank you for listening. **Any Questions?**

Engineering and Physical Sciences Research Council

