



## Characterisation of a Quenched, Quenched & Tempered AISI M2 HSS subjected to Deep Cryogenic Treatment

## Christian I. Chiadikobi<sup>a</sup>, Prof. Rob Thornton<sup>a,b</sup>\*, Dr Dimitrios Statharas<sup>a</sup>, Dr David P. Weston<sup>a</sup>

<sup>a</sup>EPSRC Innovative metal processing CDT, School of Engineering, University of Leicester, Leicester LE1 7RH, UK;

<sup>b</sup>Warwick Manufacturing Group (WMG), The University of Warwick, Coventry, CV4 7AL, UK.

## **1** Introduction

- Deep cryogenic treatment (DCT) involves treating materials at low temperatures 93K (-180°C) with aim of causing microstructural and beneficial changes e.g. improved hardness and wear resistance in martensitic steels [1 3].
- Despite the promising results, much debate surrounds the topic **due to lack of consistency of results encountered in the literature as well as limited published work presented on mechanisms responsible for changes observed for AISI M2 HSS**.
- Therefore, the effect of DCT have been studied on AISI M2 high speed steel following different heat treatment processing sequences, and characterised by a blend of techniques (XRD, SEM, Microhardness). Also by varying the processing routes, the mechanical properties can be tailored to fit the relevant applications.



AISI M2 HSS



(\*<u>rob.thornton@warwick.ac.uk</u>)

Table 1: Lattice parameter, d-spacing, c/a ratio and carbon contentof the different treatment routes

| Treatment | Lattice                 | Lattice                  | Lattice             | d –     | c/a     | Calculated C |
|-----------|-------------------------|--------------------------|---------------------|---------|---------|--------------|
| cycle     | parameter               | parameter                | parameter           | spacing | ratio   | content in γ |
|           | (a) - $\alpha'_{a}(nm)$ | (a) - $\alpha'_{c}$ (nm) | $(a) - \gamma (nm)$ | (nm)    | (α')    | (wt%)        |
| Q         | 0.2860                  | 0.2880                   | 0.3600              | 0.2023  | 1.00700 | 0.156        |
| Q+DCT     | 0.2885                  | 0.2909                   | 0.3664              | 0.2043  | 1.00832 | 0.187        |
| Q+T       | 0.2884                  | 0.2885                   | 0.3606              | 0.2029  | 1.00035 | 0.018        |
| Q+T+DCT   | 0.2940                  | 0.2955                   | 0.3666              | 0.2048  | 1.00510 | 0.113        |
| Q+DCT+T   | 0.2980                  | 0.2998                   | 0.3760              | 0.2098  | 1.00604 | 0.134        |



Figure 1: Process pathway

**Nomenclature:** Q – Quenched; T – Tempering; TiN – Titanium nitride; DCT – Deep cryogenic treatment





Figure 2: XRD patterns of the different heat treatment cycle

![](_page_0_Figure_22.jpeg)

Figure 4: SEM micrographs of the different heat treatment routes (a) As received (b) Q (c) Q+DCT (d) Q+T (e) Q+T+DCT (f) Q+DCT+T

Table 2: Hardness measurement and T-statistics

| Hardness measurement (HV <sub>0.1</sub> ) | <b>T</b> -statistics | <b>T</b> -statistics | <b>T-statistics</b> | <b>T-statistics</b> |
|-------------------------------------------|----------------------|----------------------|---------------------|---------------------|
| $\mathbf{Q}$ : 1019.7 ± 10.20 HV          | (Q & Q+DCT)          | (Q & Q+T)            | (Q+T &              | (Q+T+DCT &          |
| $Q+DCT: 1080.94 \pm 8.66 \text{ HV}$      |                      |                      | Q+T+DCT)            | Q+DCT+T)            |
| $Q+T: 960.17 \pm 7.89 \text{ HV}$         | (P-value):           | (P-value):           | (P-value):          | (P-value):          |
| $Q+T+DCT: 980.41 \pm 5.42 \text{ HV}$     | 0.012                | 6.94163E-0.6         | 0.029               | 0.009               |
| $Q+DCT+T: 999.88 \pm 5.2 \text{ HV}$      | Significant          | Significant          | Significant         | Significant         |

## **4** Conclusion

SEM examination revealed the presence of different carbide sizes, further classed (XRD) as the  $M_6C$  and MC carbide type in all samples.

Figure 3: Retained austenite content in the different treatment cycle

<u>Acknowledgements</u>: Christian Chiadikobi wishes to acknowledge EPSRC CDT (Grant No. EP/R512308/1 & EP/L016206/1) in innovative Metal Processing (IMPaCT), Jim Benson at Cryogenics Ltd (industrial partner), and the Advanced Microscopy Facility (AMF) at University of Leicester.

- Further analysis suggests that the amount of these carbides appeared to be more for the DCT samples and homogenous distributed than in the non-DCT samples.
- The presence of these carbides are considered beneficial and contributes to the material strength and resistance to wear.
- For all DCT samples, the retained austenite was found to be low, with lowest reduction obtained for Q+DCT+T (3.1%) compared to the untreated counter part.
- Hardness measurement showed that increase in hardness could be obtained following DCT. A clear trend found suggests that employing DCT between Q & T increased hardness of approximately 4.1 %, with T-statistics (p value < 0.05) suggesting the values obtained are significant (0.009).
- From the examination, the increased carbide particles and reduction in retained austenite are attributed to the changes observed.

![](_page_0_Picture_35.jpeg)

[1] Slatter, T., and Thornton, R., Cryogenic Treatment of Engineering Materials in Comprehensive Materials Finishing, M.S.J. Hashmi, Editor. 2017, Elsevier: Oxford. Pp. 421-454.

[2] Jovičević-Klug, P. et al., Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels. Materials Science and Engineering: A, 2022. 829.

[3] Jovičević-Klug, P. and Podgornik, B., *Comparative study of conventional and deep cryogenic treatment of AISI M3:2* (*EN 1.3395*) *high-speed steels*. Journal of Materials Research and Technology, 2020. **9**(6) pp. 13118-13127.

![](_page_0_Picture_39.jpeg)

![](_page_0_Picture_40.jpeg)

![](_page_0_Picture_41.jpeg)

![](_page_0_Picture_42.jpeg)

![](_page_0_Picture_43.jpeg)

UNITED KINGDOM · CHINA · MALAYSIA