

Development of formable steel grades through alternative steelmaking technologies

Hannah Clarke

Supervisors: Prof. Cameron Pleydell-Pearce, Dr Richard Curry, Martyn Dranfield

Engineering and Physical Sciences Research Council

Cronfa Gymdeithasol Ewrop European Social Fund

Background to project

- Many environmental benefits of EAF steelmaking
- EAF steel typically contains higher carbon and nitrogen levels than BF/BOF route
- Very low levels of carbon and nitrogen needed for IF steel
- Aiming to understand capability of EAF steelmaking with regards to IF steel

Research Question

What is the effect of increasing nitrogen and carbon levels on the product performance of formable strip steels?

Metallurgical principles

- Interstitial carbon and nitrogen strain the iron lattice and decrease the formability of steel
- Ti is added to scavenge interstitial atoms from the solid solution through the formation of precipitates
- Typical IF steels are highly formable and commonly used in automotive applications
- Ti and N react at high temperatures during steelmaking and continuous casting to form a stable compound, TiN, which will not decompose during subsequent treatments of the steel

Interstitial alloying element such as carbon

InTrap study

- Aiming to investigate effect of higher nitrogen levels in IF steels by making lab IF casts of fixed excess Ti (0.02 wt%) and different nitrogen levels.
- Following the InTrap route, the smaller lab scale casts (approx. 100g) were inserted into a larger transfer bar before further processing, allowing processing parameters more representative of those at an industrial scale.

Summary of OES/Eltra/LECO results for InTrap casts

	Fe	С	Mn	Al	Si	S	Р	Ti	N	Excess Ti
									eltra	(wt%)
									(ppm)	
Target (wt	99.8	0.0019	0.080	0.045	0.004	0.007	0.010	Variable		
%)										
IF 2.1	99.723	0.0021	0.099	0.055	0.003	0.0007	0.0011	0.045	57.3	0.0164
IF 2.3	99.727	0.0018	0.095	0.046	0.013	0.0008	0.0015	0.046	47.8	0.0205
IF 2.4	99.739	0.0014	0.090	0.044	0.005	0.0009	0.0014	0.040	37.0	0.0180
IF 2.5	99.68	0.0030	0.097	0.048	0.004	0.0013	0.002	0.066	56.0	0.0369
IF 2.6	99.709	0.0039	0.098	0.051	0.002	0.0007	0.0018	0.066	60.3	0.0363
IF 2.7	99.719	0.0009	0.101	0.038	0.004	0.0008	0.0015	0.062	35.3	0.0407
IF 2.9	99.707	0.0009	0.102	0.048	0.004	0.001	0.002	0.051	37.3	0.0287
IF 2.10	99.72	0.0031	0.091	0.046	0.006	0.001	0.0021	0.055	55.7	0.026
IF 2.11	99.68	0.0043	0.107	0.061	0.006	0.0009	0.0022	0.062	39.3	0.0392
IF 2.12	99.74	0.0012	0.097	0.042	0.004	0.0007	0.0023	0.046	19.7	0.0302

10 casts with varying N contents between 19.7ppm and 60.3ppm

Ti (excess) = Ti - (4C + 3.42N + 1.5S)

Gleeble cycle

Tensile results – Break and Uniform elongation

Comparison with plant data

- Expected Break elongation for DX57 ASTM25: 51%
- Expected Uniform elongation
 for DX57 ASTM25 : 26%
- Results for break elongation from the InTrap casts seem to sit within natural variation of plant data
- Uniform elongation values from the InTrap casts seem generally higher than plant data, although the average uniform elongation of the plant data (23.6±1%) is lower than the expected value for ASTM25 of 26%

elongationInTrap casts - Break elongation

 InTrap casts -Uniform elongation

elongation

Tensile results - UTS

Comparison with plant data

- The UTS of the InTrap casts is lower than typical DX57 and largely outside the range of plant data
- Mean UTS of plant data is 302±10 MPa
- Expected UTS for DX57: 299 MPa

Mechanical properties of InTrap carrier material

	UTS (Mpa)	Break elongation (%)	Uniform	R value 20%
			elongation (%)	
Expected	299	51	26	2.01
2.5L NI	303	48.2	26.6	2.23
2.9R NI	297	51.2	26.7	2.43
IF 2.10L NI	300	49.5	26.8	1.95

- The InTrap casts were inserted into IF transfer bar which underwent the same processing as the InTrap casts (hot rolling at SaMI, cold rolling, annealing using Gleeble)
- Tensile testing of the carrier material gave mechanical properties similar to the expected values, suggesting the processing route used is representative of industrial scale

EBSD – texture analysis

IF 2.3M

2.3M – texture comparison with Tata product

ODF maps

Tata Product

Microstructural analysis - TiN precipitates

SEM images showing TiN precipitates from high N industrial IF cast, confirmed with EDS

Impact of small TiN precipitates

- The high cooling rate of the centrifugal caster means any TiN precipitates formed are likely to be small and finely dispersed and therefore cannot easily be seen on an optical microscope or SEM, unlike the industrial sample with a much slower cooling rate
- As the tensile results did not show a deterioration in mechanical properties with increasing nitrogen content, the InTrap results may suggest that a high cooling rate can minimise the impact of increasing nitrogen content by preventing the growth of large precipitates
- It will be useful to compare the results from casts with slower cooling rates.

Casting options with slower cooling rates/longer holding time in liquid

TiNs seen on SEM for 80g route and confirmed using EDS. TiNs formed in 80g route can also be seen optically

TiNs seen optically on InTRAP carrier material – VIM cast

Determination of free vs combined nitrogen using Eltra

- Aiming to see if free vs combined nitrogen can be distinguished between using the Eltra.
- Samples used:
 - IF FNT1: Lab made (centrifugally cast) no added Ti – unstabilised nitrogen
 - IF FNT3: Lab made (centrifugally cast) fully stabilised
 - IF High N: Industrial high N sample, fully stabilised

Eltra free nitrogen trials - results

Summary of results – Eltra free nitrogen trials

IF FNT1

Date / ti	Sample ID	Oxygen	Nitrogen	Channels	Weight (mg)	Analyse (s)	Application
16.11.2023	IF FNT1-1.8kW	106.6 ppm	46.2 ppm	1/2	990.8	110	Default
16.11.2023	IF FNT1-1.7kW	39.3 ppm	0.0 ppm	1/2	1032.1	110	Default
16.11.2023	IF FNT1 - 1.75kW	109.8 ppm	33.5 ppm	1/2	1050.8	110	Default
16.11.2023	IF FNT1 - 1.85kW	27.2 ppm	0.7 ppm	1/2	1034.1	110	Default
16.11.2023	IF FNT1 - 1.85kW	94.1 ppm	37.4 ppm	1/2	1006.3	110	Default
16.11.2023	IF FNT1-1.9kW	379.4 ppm	206.2 ppm	1/2	1028.2	110	Default
16.11.2023	IF FNT1-2 kW	367.1 ppm	221.7 ppm	1/2	985.7	110	Default
16.11.2023	IF FNT1-2.1 kW	368.4 ppm	239.7 ppm	1/2	1015.2	110	Default
16.11.2023	IF FNT-1-2.2 kW	349.1 ppm	268.0 ppm	1/2	1022.9	110	Default

IF FNT3

Date/ti	Sample ID	Oxygen	Nitrogen	Channels	Weight (mg)	Analyse (s)	Application
23.11.2023	IF FNT3-1.7kW	0.0 ppm	0.0 ppm	1/2	1001.5	90	Default
23.11.2023	IF FNT3 - 1.8kW	1.2 ppm	0.0 ppm	1/2	1045.1	96	Default
23.11.2023	IF FNT3 - 1.9kW	28.7 ppm	28.8 ppm	1/2	1013.4	110	Default
23.11.2023	IF FNT3-2kW	73.7 ppm	127.2 ppm	1/2	1012.0	110	Default
23.11.2023	IF FNT3-2.1kW	109.2 ppm	218.3 ppm	1/2	1004.8	110	Default
23.11.2023	IF FNT3-2.2kW	95.6 ppm	95.1 ppm	1/2	1005.0	90	Default
23.11.2023	IF FNT3 - 2.3kW	121.8 ppm	286.1 ppm	1/2	982.5	110	Default
23.11.2023	IF FNT3-2.4kW	159.1 ppm	161.2 ppm	1/2	1016.9	91	Default
23.11.2023	IF FNT3-2.7kW	122.8 ppm	224.3 ppm	1/2	1013.9	90	Default

N first released at ~1.7kW, significantly at ~1.9kW

> N first released at ~1.9kW, significantly at ~2.1kW

IF Ind High N

Date / ti	Sample ID	Oxygen	Nitrogen	Channels	Weight (mg)	Analyse (s)	Applicatio
25.10.2023	IF High N - 1.7kW	2.7 ppm	0.0 ppm	1/2	1003.0	97	Default
25.10.2023	IF High N - 1.8kW	9.9 ppm	1.6 ppm	1/2	974.7	110	Default
25.10.2023	IF High N - 1.9kW	7.1 ppm	0.0 ppm	1/2	1065.0	110	Default
06.11.2023	IF High N - 1.95kW	11.3 ppm	17.2 ppm	1/2	970.6	110	Default
06.11.2023	IF High N - 2kW	19.7 ppm	7.5 ppm	1/2	1033.7	110	Default
06.11.2023	IF High N - 2.1kW	11.1 ppm	91.9 ppm	1/2	1065.1	110	Default
06.11.2023	IF High N - 2.2kW	0.0 ppm	202.8 ppm	1/2	956.3	110	Default
06.11.2023	IF High N - 2.3kW	12.1 ppm	205.8 ppm	1/2	957.9	110	Default
06.11.2023	IF High N - 2.7kW	16.1 ppm	315.4 ppm	1/2	975.9	96	Default

N first released at ~1.95kW, significantly at ~2.2kW These trials suggest that it may be possible to use the Eltra to indicate if nitrogen is free or combined in precipitates

Application to InTRAP Study

 This technique was used on the InTrap casts – nitrogen was not released at 1.7kW or 1.8kW but started to be released at 1.9kW – this follows the pattern of the casts with combined nitrogen, suggesting the nitrogen in the InTrap casts was tied up in precipitates.

	loady								1.1
0	Date/ti	Sample ID	Oxygen	Nitrogen	Channels	Weight (mg)	Analyse (s)	Application	(
	06.02.2024	IF 2.12L -1.7kW	15.8 ppm	0.0 ppm	1/2	989.3	110	Default	1
	06.02.2024	IF 2.12L -1.8kW	4.3 ppm	0.0 ppm	1/2	999.1	91	Default	4
	06.02.2024	IF2.12L-1.9kW	38.3 ppm	11.5 ppm	1/2	993.1	100	Default	3
	06.02.2024	IF 2.12L -2kW	15.4 ppm	36.1 ppm	1/2	996.9	110	Default	1
	06.02.2024	IF 2.12L -2.1kW	54.3 ppm	32.1 ppm	1/2	991.0	110	Default	5
	06.02.2024	IF 2.12L -2.2kW	30.3 ppm	57.8 ppm	1/2	993.7	110	Default	3
	06.02.2024	IF 2.12L -2.3kW	16.7 ppm	43.6 ppm	1/2	986.9	99	Default	1
	1								

Conclusions

- InTrap results seem to show no clear deterioration in mechanical properties with increasing nitrogen content – this may be a result of the fast cooling rate, preventing the formation of large TiN precipitates.
- Carrier material for InTrap casts show mechanical properties similar to those expected by plant suggests processing route can give representative results
- It may be possible to distinguish between free and combined nitrogen using the Eltra

Future work

- Comparison of results with casts at different cooling rates/ holding time in liquid
 - 80g study
 - VIM casts

Thank you for listening

Hannah Clarke

967961@swansea.ac.uk

Engineering and Physical Sciences Research Council

Cronfa Gymdeithasol Ewrop European Social Fund