The effect of inconsistent casting on the mechanical performance of cast iron wind turbine components

Obey Suleyman

Supervisors - Tiziana Marrocco, Fiona Sillars, Maider Olasolo

UNIVERSITY of STRATHCLYDE ADVANCED MATERIALS RESEARCH LABORATORY

Contents

- Background
- Wind turbine components under consideration
- Mechanical testing
- Compositional analysis
- Microstructural characterisation
- Issues regarding the current casting & cooling procedure
- Conclusions

Background

Scottish wind turbine facts ^[1]:

- Currently ≈80kt of spheroidal graphite iron (SGI) offshore
- By 2050 ≈500 turbines decommissioned → ≈17kt of SGI
- By 2050 >1500kt of SGI required

Manufacturing processes must be improved to effectively deal with upcoming demands!

Component failure rates & downtimes depend on turbine type: WMEP yaw system: ≈ 0.2 failures/year $\rightarrow \approx 2.5$ downtime days/year This equates to ≈ 63 days over the average turbine lifespan ^[2]

[1] D. C. Stamper, D. A. Velenturf and D. J. Millward-Hopkins, "End of life materials mapping for offshore wind in Scotland," Catapult offshore renewable energy, 2022. [2] Tavner, P. (2011), How Are We Going to Make Offshore Wind Farms More Reliable?, presented at the 2011 SUPERGEN Wind General Assembly, March 20, Durham University, United Kingdom

What wind turbine components?

The yaw system is housed between the tower and nacelle

What materials?

• Cast iron grades are defined by EN-1563-2018 'Spheroidal graphite cast irons':

• Little significance on composition and cooling treatments of the cast iron grade

YBC1	EN-GJS-500-7	170-230	201 ± 15
YBC2	EN-GJS-500-7	170-230	194 ± 10

Yaw Gears – Defining strength & elongation

- Significant difference between yaw gears both in tensile strength & elongation
- Brittle failure apparent in YG1, some necking apparent in YG2

Yaw Gears – Chemical composition

• Significant compositional differences between yaw gears - mainly Ni; but also Cu, Mn & Cr

Yaw Gears – Phases volume fraction

Yaw Callipers – Defining strength & elongation

- Similar tensile strength and elongation between callipers
- Brittle failure apparent in both callipers

Yaw Callipers – Chemical composition

- Composition across YBCs similar
- Differences in 'impurity' elements which could hinder fatigue life

Yaw Callipers – Phases volume fraction

Yaw Callipers – Effect of casting

- Chains of carbides and macro shrinkage porosity hinder mechanical properties
- Heavily dendritic microstructure evident in YBC2

Yaw Gears – Effect of casting

- 'Dark' zones highlight issues attributed to cooling
- Elements with lower melting points segregate and solidify together
- Chains of macro shrinkage porosity and carbides generate areas of weakness

Conclusions

- Yaw gears produced stark differences when tensile tested, mostly due to Ni → differences in microstructure
- Yaw break callipers showed relatively little difference when tensile tested → similar composition & microstructure
- YBC2 was found to have a heavily dendritic structure \rightarrow potential hindrance to fatigue life
- Inconsistent casting control can generate significantly different materials

Future work

- Comprehensive microstructural analysis on the effects of composition and casting on yaw gears and callipers properties – e.g. ferrite grain size measurements, pearlite interlamellar spacing measurements, graphite nodule analysis
- Fatigue testing to define SN curve

Questions

