In situ synchrotron radiography investigation of graphite nodule evolution during solidification in ductile cast iron

Xiangmei Ding

PhD candidate, University of Leicester

Supervisor: Mohammed Abdul Azeem (<u>mohammed.azeem@leicester.ac.uk</u>)

Cast Iron: The First Man-made Composite

Ding 鼎 from a grave excavated at Yutaishan in Jiangling, Hubei, dated to the 4th century BCE [1]. 2500 years of history, from ancient origins to modern advancements

Introduction of Cast Iron in Europe

In the1400s, iron casting was introduced into Europe...

Iron Bridge, Coalbrookdale

Royal Pavilion, Brighton

Renewable energy

Source: BP Statistical Review of World Energy, 2021

In the 1940s, ductile cast iron was discovered, marking the beginning of a Wind energy generation control in electricity • Wind has overtaken coal in electricity

Why Choose DCI

Spheroidal graphite

Microstructure

Properties

- High Strength-to-Weight ratio
- Excellent Fatigue Resistance
- Damping capacity

Synchrotron Radiography

High spatial resolution

Allowing fine details of **small objects** to be obtained

High temporal resolution

Allowing for dynamic imaging of fast-moving or evolving processes

Experimental set-up

Beamline: BL20XU, SPring-8 X-ray energy: 21keV Pixel size: 0.5 μm x 0.5 μm Frame rate: 10 fps Specimen dimensions: 100mm × 100mm × 100 μm Cooling rate: 30K/min

Methodology

Advantages

- Fast imaging
- High spatial resolution
- High contrast

Disadvantages

- 2d
- Geometric constraints

Image Processing

Trainable Weka Segmentation

Data overview

Content

- ✓ Inoculant Kinetics
 - Distance and Speed

Nucleation

- Three Nucleation Waves
- Spheroidal growth
- Floatation

Degenerate Morphologies

- Sphericity change
- Interconnection

Inoculant Kinetics

Inoculant morphology

Findings

- Location affects inoculant kinetics.
- Inoculants may not nucleate immediately upon contact with dendrites.
- The morphology of inoculants did not show significant changes before nucleation.

Content

Inoculant Kinetics

Distance and Speed

✓ Nucleation

- Three Nucleation Waves
- Spheroidal growth
- Floatation

Degenerate Morphologies

- Sphericity change
- Interconnection

Distribution of Nucleation Events Over Time

Nucleation

Findings

- Nodule size is influenced by the location due to local geometric restraint and chemical distribution.
- 1st wave nodules tend to nucleate on the dendrite front and have a larger final size.
- 2nd wave nodules tend to nucleate between dendrite arms and has a smaller growth rate and growing time.

Floatation

Floatation can result in inhomogeneous microstructure and cause reduced mechanical properties

Findings

- The nodules showing floatation are some of the largest nodules.
- Flotation can take place across a range of distances.

Content

Inoculant Kinetics

Distance and Speed

Nucleation

- Three Nucleation Waves
- Spheroidal growth
- Floatation
- ✓ Degenerate Morphologies
 - Sphericity change
 - Interconnection

Sphericity Change

Example of Sphericity Change Over Time

Global Sphericity Every 10 Seconds

Interconnection

Interconnection of 3 Pairs of Nodules

Findings

 Approximately 39.8% of nodules from third nucleation show interconnection during the late stage of solidification, particularly when close nodules are present.

Conclusion

 Increasing capability of synchrotron radiation techniques allows observations of highly dynamic processes, which may lead to better understanding of the solidification behavior.

Ongoing work

• Simulation of growth and degenerate of graphite nodule

Funding bodies

• Research Fund for Coal and Steel

Tipp Witgges Miels S. Tieldje, Yasuda Hideyuki, Narumi Taka, Jesper H. Hared, Neim & Shepherd, Peter D. Lee, and Mohammed Abdul Azeem

Other support

- Diamond Light Source, especially I12 Team
- Research Complex at Harwell

